google search engine

Google
 

Wi-Fi

he typical Wi-Fi setup contains one or more Access Points (APs) and one or more clients. An AP broadcasts its SSID (Service Set Identifier, Network name) via packets that are called beacons, which are broadcasted every 100 ms. The beacons are transmitted at 1 Mbit/s, and are relatively short and therefore are not of influence on performance. Since 1 Mbit/s is the lowest rate of Wi-Fi it assures that the client who receives the beacon can communicate at at least 1 Mbit/s. Based on the settings (i.e. the SSID), the client may decide whether to connect to an AP. Also the firmware running on the client Wi-Fi card is of influence. Say two AP's of the same SSID are in range of the client, the firmware may decide based on signal strength (Signal-to-noise ratio) to which of the two AP's it will connect. The Wi-Fi standard leaves connection criteria and roaming totally open to the client. This is a strength of Wi-Fi, but also means that one wireless adapter may perform substantially better than the other. Since Windows XP there is a feature called zero configuration which makes the user show any network available and let the end user connect to it on the fly. In the future wireless cards will be more and more controlled by the operating system. Microsoft's newest feature called SoftMAC will take over from on-board firmware. Having said this, roaming criteria will be totally controlled by the operating system. Wi-Fi transmits in the air, it has the same properties as non-switched ethernet network. Even collisions can therefore appear like in non-switched ethernet LAN's.


Wi-Fi vs. cellular

Some argue that Wi-Fi and related consumer technologies hold the key to replacing cellular telephone networks such as GSM. Some obstacles to this happening in the near future are missing roaming and authentication features (see 802.1x, SIM cards and RADIUS), the narrowness of the available spectrum and the limited range of Wi-Fi. It is more likely that WiMax could compete with other cellular phone protocols such as GSM, UMTS or CDMA. However, Wi-Fi is ideal for VoIP applications like in a corporate LAN or SOHO environment. Early adopters were already available in the late '90s, though not until 2005 did the market explode. Companies such as Zyxell, UT Starcomm, Samsung, Hitachi and many more are offering VoIP Wi-Fi phones for reasonable prices.

In 2005 ADSL ISP providers started to offer VoIP services to their customers (eg. the dutch ISP XS4All). Since calling via VoIP is low-cost and more often being free, VoIP enabled ISPs have the potential to open up the VoIP market. GSM phones with integrated Wi-Fi & VoIP capabilities are being introduced into the market and have the potential to replace land line telephone services.

Currently it seems unlikely that Wi-Fi will directly compete against cellular. Wi-Fi-only phones have a very limited range, and so setting up a covering network would be too expensive. Therefore these kinds of phones may be best reserved for local use such as corporate networks. However, devices capable of multiple standards may well compete in the market.


Commercial Wi-Fi

Commercial Wi-Fi services are available in places such as Internet cafes, coffee houses and airports around the world (commonly called Wi-Fi-cafés), although coverage is patchy in comparison with cellular:

  • Ozone and OzoneParis In France, in September 2003, Ozone started deploying the OzoneParis network across the city of lights. The objective: to construct a wireless metropolitan network with full Wi-Fi coverage of Paris. Ozone Pervasive Network philosophy is based on a nationwide scale.
  • WiSE Technologies provides commercial hotspots for airports, universities, and independent cafes in the US;
  • T-Mobile provides hotspots in many Starbucks in the U.S, and UK;
  • Pacific Century Cyberworks provides hotspots in Pacific Coffee shops in Hong Kong;
  • a Columbia Rural Electric Association subsidiary offers 2.4 GHz Wi-Fi service across a 3,700 mi² (9,500 km²) region within Walla Walla and Columbia counties in Washington and Umatilla County, Oregon;
  • Other large hotspot providers in the U.S. include Boingo, Wayport and iPass;
  • Sify, an Indian internet service provider, has set up 120 wireless access points in Bangalore, India in hotels, malls and government offices.
  • Vex offers a big network of hotspots spread over Brazil. Telefónica Speedy WiFi has started its services in a new and growing network distributed over the state of São Paulo.
  • Link repository on Wi-Fi topics at AirHive Net


Universal Efforts

Another business model seems to be making its way into the news. The idea is that users will share their bandwidth through their personal wireless routers, which are supplied with specific software. An example is FON, a Spanish start-up created in November 2005. It aims to become the largest network of hotspots in the world by the end of 2006 with 30 000 access points. The users are divided into three categories: linus share Internet access for free; bills sell their personal bandwidth; and aliens buy access from bills. Thus the system can be described as a peer-to-peer sharing service, which we usually relate to software.

Although FON has received some financial support by companies like Google and Skype, it remains to be seen whether the idea can actually work. There are three main challenges for this service at the moment. The first is that it needs much media and community attention first in order to get though the phase of 'early adoption' and into the mainstream. Then comes the fact that sharing your Internet connection is often against the terms of use of your ISP. This means that in the next few months we can see ISPs trying to defend their interests in the same way music companies united against free MP3 distribution. And third, the FON software is still in Beta-version and it remains to be seen if it presents a good solution of the imminent security issues...


Free Wi-Fi

While commercial services attempt to move existing business models to Wi-Fi, many groups, communities, cities, and individuals have set up free Wi-Fi networks, often adopting a common peering agreement in order that networks can openly share with each other. Free wireless mesh networks are often considered the future of the internet.

Many municipalities have joined with local community groups to help expand free Wi-Fi networks. Some community groups have built their Wi-Fi networks entirely based on volunteer efforts and donations.

For more information, see wireless community network, where there is also a list of the free Wi-Fi networks one can find around the globe.

OLSR is one of the protocols used to set up free networks. Some networks use static routing; others rely completely on OSPF. Wireless Leiden developed their own routing software under the name LVrouteD for community wi-fi networks that consist of a completely wireless backbone. Most networks rely heavily on open source software, or even publish their setup under an open source license.

Some smaller countries and municipalities already provide free Wi-Fi hotspots and residential Wi-Fi internet access to everyone. Examples include the Kingdom of Tonga or Estonia which have already a large number of free Wi-Fi hotspots throughout their countries.

In Paris France, OzoneParis offers free Internet access for life to anybody who contributes to the Pervasive Network’s development by making their rooftop available for the WiFi Network.

Many universities provide free WiFi internet access to their students, visitors, and anyone on campus. Similarly, some commercial entities such as Panera Bread offer free Wi-Fi access to patrons. McDonald's Corporation also offers Wi-Fi access, often branded 'McInternet'. This was launched at their flagship restaurant in Oak Brook, Illinois and is also available in many branches in London, UK.

However, there is also a third subcategory of networks set up by certain communities such as universities where the service is provided free to members and guests of the community such as students, yet used to make money by letting the service out to companies and individuals outside. An example of such a service is Sparknet in Finland. Sparknet also supports OpenSparknet, a project where people can name their own wireless access point as a part of Sparknet in return for certain benefits.

Recently commercial Wi-Fi providers have built free Wi-Fi hotspots and hotzones. These providers hope that free Wi-Fi access would equate to more users and significant return on investment.


Wi-Fi vs. Amateur Radio

In the US, the 2.4 GHz Wi-Fi radio spectrum is also allocated to amateur radio users. FCC Part 15 rules govern non-licenced operators (i.e. most Wi-Fi equipment users). Amateur operators retain what the FCC terms 'primary status' on the band under a distinct set of rules (Part 97). Under Part 97, licensed amateur operators may construct their own equipment, use very high-gain antennas, and boost output power to 100 watts on frequencies covered by Wi-Fi channels 2-6. However, Part 97 rules mandate using only the minimum power necessary for communications, forbid obscuring the data, and require station identification every 10 minutes. Therefore, expensive automatic power-limiting circuitry is required to meet regulations, and the transmission of any encrypted data (for example https) is questionable.

In practice, microwave power amplifiers are expensive and decrease receive-sensitivity of link radios. On the other hand, the short wavelength at 2.4 GHz allows for simple construction of very high gain directional antennas. Although Part 15 rules forbid any modification of commercially constructed systems, amateur radio operators may modify commercial systems for optimized construction of long links, for example. Using only 200 mW link radios and two 24 dB gain antennas, an effective radiated power of many hundreds of watts in a very narrow beam may be used to construct reliable links of over 100 km with little radio frequency interference to other users.


Advantages of Wi-Fi

  • Unlike packet radio systems, Wi-Fi uses unlicensed radio spectrum and does not require regulatory approval for individual deployers.
  • Allows LANs to be deployed without cabling, potentially reducing the costs of network deployment and expansion. Spaces where cables cannot be run, such as outdoor areas and historical buildings, can host wireless LANs.
  • Wi-Fi products are widely available in the market. Different brands of access points and client network interfaces are interoperable at a basic level of service.
  • Competition amongst vendors has lowered prices considerably since their inception.
  • Wi-Fi networks support roaming, in which a mobile client station such as a laptop computer can move from one access point to another as the user moves around a building or area.
  • Many access points and network interfaces support various degrees of encryption to protect traffic from interception.
  • Wi-Fi is a global set of standards. Unlike cellular carriers, the same Wi-Fi client works in different countries around the world.

No comments:

google search engine

Google